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Interpolation of scattered data at distinct points xl"'" X n E [Rd by linear
combinations of translates cPCllx - x

J
1I2) of a radial basis function cP: iR ,,0 -> iR

requires the solution of a linear system with the n by n distance matrix A ,=
CcP(llx j - xjI12). Recent results of Ball, Narcowich and Ward, using Laplace trans
form methods, provide upper bounds for IIA -1112, while Ball, Sivakumar, and
Ward constructed examples with regularly spaced points to get special lower
bounds. This paper proves general lower bounds by application of results of
classical approximation theory. The bounds increase with the smoothness of cP. In
most cases, they leave no more than a factor of n - 2 to be gained by optimization
of data placement, starting from regularly distributed data. This follows from
comparison with results of Ball, Baxter. Sivakumar, and Ward for points on scaled
integer lattices and supports the hypothesis that regularly spaced data are near
optimal, as far as the condition' of the matrix A is concerned. 1994 AcademIC

Press. Inc.

1. INTRODUCTION

Let rp: [R > [) ~ [R be a scalar ("radial") function, and let n distinct
points ("centres") x I' ... , X n E [R" be given, forming a set X:=
{XI"'" xnL As reported by Hardy [8] and Franke [7], interpolation of real
values Y" 1 ::s; i ::s; n, at the centres x, by linear combinations

11

s(X) .- L ajrp(IIx - x/II2)'
j~1

a, E [R X E [R"
j , (1.1 )

of translates of rp(11 . 112) can produce very good numerical results, if rp is
the "multiquadric" rp,(r) = (c 2 + r 2 )1/2, for instance. The interpolation
problem for a function of the form (}.1) requires the solution of the linear
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"L Q'/P(lI x [ - x J 1I2) = Y[,
J~I

( 1.2)

In some cases the n functions (Nil· - x)12) are augmented by a basis of
the space PI;; of all d-variate polynomials of total degree less than m. Let

(
m-l+d)J.-t:= J.-t(m,d):= d ' m;:::: 1, J.-t(O,d) := 0 (1.3)

denote the dimension of IP'[~, and let a basis be given by q l' ... , q/-L' From
now on, we suppress the dependence of J.-t on m and d to keep the
notation simple. For m > 0 we additionally assume q l' ... ,q/-L to be
linearly independent over the set X = {x l' ... , x,,} of centres, which
implies n ;:::: J.-t. Then the (n + J.-t) by (n + J.-t) matrix

( 1.4)

which occurs in the generalization

" I-'

1: Q' j C/J(lI x ; - x;l12) + L {3kqk(X;) = Yi'
j~l k~1

"L Q'jqk(X j ) + 0 = 0,
j~1

1 sis n

( 1.5)

of the system 0.2) is called a (generalized) distance matrix. It is nonsingu
lar in the cases

C/J(r) = r 2{3 log r,

<1>(r) = 10g(c 2 + r 2
),

C/J(r) = r 2{3,

{3, c > 0, {3 rt. N, m > {3
(multiquadrics for {3 = 1/2)

{3, C > 0, m ;:::: 0
(inverse multiquadrics for {3 = 1/2)

{3 = m - d /2 > 0, d E 2N
(thin-plate splines)

C > 0, m ;:::: 0

f3 = m - d /2, m > d/2, d E 2N - I, or
f3 E (0, I), d E 2N - I, m ;:::: 0, or
f3 = 1/2, n ;:::: 2, m ;:::: 0

Q' > 0, m ;:::: 0 (Gaussians).
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This follows from the work of Micchelli [9) and Schoenberg [14) (see also
Dyn [5) and Powell [13) for highly useful surveys of known results).
Furthermore, condition numbers of A were often observed to be quite
large. Special preconditioning strategies for solving the system (1.5) were
supplied by Dyn, Levin, and Rippa [6) in a variety of special cases.

Some very interesting upper bounds for the spectral norm II A - '112 of A
were given by Ball [1] and Narcowich and Ward [10,11), using Laplace
transform methods. These bounds are in terms of the "separation dis
tance"

h:= min Ilx; - xll12
I"H"J"n

( 1.6)

and hold for arbitrary placements of centres x j ' 1 :;:;; j :;:;; n. Recently, a
paper by Ball, Sivakumar, and Ward [2] derived lower bounds for IIA -1112
for special regular choices of centres by a similar technique. Furthermore,
Baxter [4) has investigated the case of centres on subsets of the integer
lattice. Using the Toeplitz structure of A, he derived bounds for IIA -1112
for a wide class of radial basis functions including multiquadrics. His
bounds are asymptotically optimal in the sense that their behaviour for
n ~ 0:: is best possible up to a constant factor. Since the existing lower
bounds of II A - '112 only hold for data on finite regular grids, the value of
II A - 1112 might be decreased by irregular placements of centres.

This paper complements Ball, Baxter, Narcowich, Sivakumar, and Ward
by producing general lower bounds for II A - \112, independent of the
distribution of centres and independent of the separation distance, via a
completely different approach. Combined with the other results, they
provide a bound for the possible gain by optimizing the placement of
centres with respect to the condition of A. The findings of this paper are
roughly of the form

where E(i, K, (/J) denotes the error of best Chebyshev approximation by
polynomials of degree less than I to the function (/J(Ii) on the interval
[0, K Z] defined via the diameter

K:= max Ilx; - xjllz
l"l.j"n

( 1.7)

of the data set in the Euclidean norm. This relates the bound to the
smoothness of (/J and the dimension d of the space, and in a very
remarkable way indeed: the bound tends to be smaller, if the smoothness
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of the radial basis functions is decreased, The results can be generalized to
other matrix norms than the spectral norm to which the other bounds in
the literature are confined.

2. BASIC RESULTS

We assume that the radial function 4>, the n ~ 2 centres x
J

E X :=
{x" ... , x

ll
}, the space dimension d, and the polynomial order m are such

that the matrix A in (I.4) is nonsingular. For an arbitrary polynomial
p E p/ we define the matrix

(2.1 )

as an approximation to A. Note that A and A I' differ only in their upper
n by n submatrices with entries 4>(llx; - X)2) and p(llx; - xjll~), respec

tively. Thus a good approximation of 4>( {;) by a polynomial p E lPi on
the set T of all real values t;j := Ilx; - xjll~ will produce a good approxi
mation of A by AI"

We now pick two arbitrary norms II· Ilr and II· II" on 1R1l+/L and define
the usual operator norm

IIBllr" := sup{IIBxllr/llxll, Ix E 1R1l+/L \ {O}}. (2.2)

By the theorem of Weierstrass, there will be some p E p/ for I large
enough such that

(2.3 )

holds. We now assert that (2.3) is a sufficient condition for AI' to be
nonsingular. In fact, for arbitrary vectors x, y with AfJx = y we find

Ilxll r = IIA-IAxll r =IIA-I(y + (A -Ap)x)llr

:-0; IIA -'llr,.Ilyll, + IIA -IIL"IIA - AfJlIs.rllxll"

and reordering yields a bound for IIA,~ '1Ir".
Now, whenever AI' is nonsingular, the n + !-L polynomials

p(II' - x)ln,

qk(-)'

1 :-0; j :-0; n = IXI

1:-o;k:-O;!-L
(2.4)
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span the n-dimensional space C(X), because the n first rows or columns
of A I' are linearly independent. For any univariate polynomial p E lPi we
can define a subspace

of the space IPft- I' and whenever A I' is nonsingular, we have dim PI' ~ n,
because the polynomials in (2.4) span the n-dimensional space C( X). If
we define

IJ-*(l) := 1J-*(X,I,m,d) := max dim PI"
pEP,'

we conclude that

IJ-*(l) ~ IXj = n

(2.6)

(2.7)

holds, if 1 is large enough to satisfy (2.3) for some p E lPi.
We now turn this argument upside down. Clearly the function IJ-*([) is

(weakly) monotonic in 1 and has the obvious bounds

IJ- ~IJ-*(l) ~ IXI +IJ-.

Our argument above implies existence of the maximum in the definition of

1* := 1*( X, m, d) := max{l ~ 0 IIJ-*(l) < IXI}.

This yields

IJ-*(l*) < IXI = n,

which will be needed in the proof of

THEOREM 2.1. The inverse of A, if it exists, satisfies

(2.8)

IIA - III;,~ ~ inf{IIA - Aplls.r Ip E lPi'(x,m,d)}' (2.9)

where A I' is defined by (2.1).

Proof Take any polynomial p E lPi. and assume A I' to be nonsingular.
Then the n + IJ- polynomials (2.4) span the space C(X). Since they are in
the space PI' occurring in (2.6), the inequality (2.8) is violated. Thus A I'
must be singular for all p E lPi•. But then the inequality (2,3) cannot hold
because it would imply the nonsingularity of A 1" as was shown above. This
proves the assertion. I
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Theorem 2.1 relates lower bounds for IIA-Illr" to a somewhat peculiar
matrix-valued approximation problem. The error matrix is zero except for
the upper left n by n submatrix of A - A" with entries

lsi,jsn.

Thus it involves an approximation of $( If) by polynomials of order at
most /* on the set T of all real values til := IIX i - xjll~ such that the
function values are arranged in n x n matrix form and such that the
approximation error is measured via the matrix norm II . IIs,r from (2.2).
The actual form of the approximation problem is thus determined by the
matrix norm chosen. For the spectral norm IIA - A"II2,2 we get a rather
nasty approximation problem, but for the norm

IIBllx.1 = max Ib,jl
\,;i.j,;"

(2.10)

we can use Chebyshev approximation on T. Here, we interpreted the
norms II . Ilr and II . IL, of (2.2) as the usual L r and L s norms, but this is by
no means mandatory. Studying linear approximation problems for peculiar
norms like the spectral matrix norm may be of independent interest in
approximation theory.

We want to give good asymptotic lower bounds for II A - III r. s in case
n ~ ce, and we want to compare the bounds with those of Ball, Baxter,
Narcowich, Sivakumar, and Ward for the spectral norm IIA -1112,2. We saw
the latter to be rather inconvenient for our approach while good asymp
toties are mainly available for Chebyshev approximation on real intervals.
Therefore we try to get as far as we can with best Chebyshev approxima
tion to the function $(If) on the real interval [0, K 2

] by polynomials of
order /. Note that this is equivalent to a best Chebyshev approximation of
order 21 - 1 to the function $( 1rI) on [ - K, +K], which, by uniqueness
and symmetry, must be a polynomial of maximal order / in r 2

• Then we
denote the error by

E(l):=E(l,K,$):= min max 1$(If) -p(r)1
pEPt'll,;r,;K 2

= min 11$(lrl) - p(r 2
)llx.l-K.KJ,

pEPt'

writing the Chebyshev norm of continuous functions on a real interval
[a, b] by II . Ilx. [a. hJ.
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THEOREM 2.2. The inverse of A, if it exists, satisfies

and
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(2.11)

(2.12)

Proof Inequality (2.11) readily follows from Theorem 2.1 and (2.10).
Then we conclude (2.12) simply from (2.11) and

IIBI/I,o< :$ n . //BI/2,2

for arbitrary n by n matrices B. I

Unfortunately, our approach yields a factor of n -, in the bound for the
spectral norm; the comparisons at the end of the paper will indicate that
we often seem to miss the actual behaviour of II A - %.2 for regular data
asymptotically by just this factor. But there appear to be no other handy
links between the spectral norm for matrices and the Chebyshev norm for
the matrix entries. The factor does not arise if we use (2.11) or replace E
in (2.12) by the (unknown) error of best approximation by polynomials in
the spectral norm. Theorem 2.2 relates lower bounds of II A - 'II to the
error of best Chebyshev approximations to qJ( jrl) by polynomials of order
1* in the variable r 2, and we shall see below that 1* behaves approxi
mately like at least n 1

/
d for large n. Altogether, our lower bounds will

grow astronomically with n, if qJ( Ir/) can be extended to an entire
function in the complex plane I[ (e.g., for Gaussians). They will be of
polynomial growth, if qJ( Ir I) has only finitely many continuous derivatives,
which is the case for thin-plate splines and positive non-even rational
powers of r. However, they will still grow exponentially for all 4>(lrl)
which are analytic in C around [0, K], e.g., for multiquadrics and inverse
multiquadrics, if c is fixed. To get around this, c must tend to zero for n
tending to infinity, moving the singularity of qJ toward the real axis. The
details are worked out in the rest of the paper, but due to classical
Jackson-Bernstein theorems the lower bounds for II A -'II are directly
related to the smoothness of 4>: they get larger, if the smoothness
increases.
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3. AUXILIARY RESULTS

The remammg task now is to evaluate £(J*(X, m, d), K, $) for the
functions listed in the introduction. Since the quantities £(i, K, <1» can be
estimated using classical results of approximation theory (this will be done
in the following section), we first prove something about p.,*(l) and 1* as
defined in the beginning of the preceding section. For this, we suppose X,
m, and d to be fixed, and we first look for an upper bound for p.,* from
(2.6).

To derive simple results, the crude bound

p.,*(l) ::; dim IPf/-1 = p.,(21 - 1, d)

for 21 > m suffices. It follows easily from (2.5) and uses the general
definition of p.,(', d) from 0.3). But there is an improvement of this
bound:

LEMMA 3.1. Let p be a unimriate polynomial of order ::; I, where
I ~ m + 1. Then the subspace Pp ' as defined in (2.5), is a subspace of
IPf/-l-m and has dimension at most

dimlP/+dimlP/_I-dimlP,~=p.,(/,d)+p.,(l-l,d) -p.,(m,d). (3.1)

Furthermore,

p.,* (l) ::; p., (l , d) + p., (l - 1, d) - p., ( m , d) .

Proof By expansion of the translate

1- I

Py(x) := p(llx - yliO = L Qkllx - yl/3 k

k~O

of p into sums of products of simpler terms we get the representation

1- 1

Py(X) = L Qk(XTX - 2x Ty + yTy)k
k~O
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Thus an arbitrary function taken from ~, in (2.5) can be written as

iL n

L f3kQk(X) + L Ytp(llx - x/In
k~ 1 t~ I

iL

=Lf3kQk(X)
k~ I

295

iL

= I: f3 kQk(X)
k~ I

and we note that the sum over t yields zero whenever j + 2(k - i - j) ~
m - 1. Thus the range of i and j can be restricted to m + j + 2i ~ 2/ - 2,
and the function will be contained in the subspace

(
.. !O<j<l-lO<i</-l-j)Q = Ifl>; + span (x Tyr(x Tx) , -.- .' - - d

m + } + 21 ~ 2/ - 2, y E IR

of 1fl>~/_I_m' But the number of spanning functions can be further reduced.
We assert that Q lies in the subspace

The terms (XTX)i(XTy)J for 2i + j ~ / - 1 lie directly in Ifl>( Those with
i + j = / - 1 that are not in Ifl>l will have j ~ / - 2, and the restriction
m + j + 2i ~ 2/ - 2 implies j ~ m. Thus these terms clearly lie in Q. For
the remaining cases we can define r;= / - 1 - i - j > 0 and split the
terms as
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We now use that each factor (XTX)'(XTy)j, being a homogeneous polyno
mial in 1P~lr+l+j' can be represented via terms of type (x Ty)2r+ j . This leads
to terms of the form (xTx)l~r(xTy)2r+j, and these are in Q, as an easy
check of the exponents reveals.

We now have to bound the dimension of Q from above. If H/ denotes
the space of homogeneous polynomials on [R" of order j, then the space
1Pt" is representable as

1Pt" = span{(xTy)J IO:s;j:s; 1- 1, y E [R"}
= span{ H/ 11 :s; j :s; I}, (3.3)

and we shall consider the excess of Q over 1Pi'- The representation 0.2)
can be rearranged as

and we can repeat the argument used for 0.3) to conclude that the
dimension of the second part is bounded from above by dim IPf~ I - dim IP,~.

This proves 0.1), and the second assertion of the lemma is obvious
because Qcontains IP,~ for m :s; I. I

If we define

1** := I**(n, m, d)

:=max{l~OI~(l,d)+~(l-I,d) -~(m,d) <n}, (3.4)

we have

m :s; 1** :s; 1* . (3.5)

Note that I**(n, m, d) is monotonic with respect to n. For 1 ---+ oc and d
fixed, clearly

which implies the asymptotic behaviour

(
d l )1/"

I**(n,m,d)= -i-n +&(1) (3.6)

for n = IXI ---+ oc and fixed values of m and d. This will be sufficient for
later use, because 0.5) allows us to work with I**(n, m, d) and 0.6)
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instead of I*(X, m, d) for large n. Since we are not interested in cases
with very small values of n, we pay no further attention to the unimpor
tant restrictions n ~ max(2, J.L(m, d» and I ~ m + 1.

In the one-dimensional case we easily get

J.L* ( X, I, m, 1) = 21 - 1 for 0 ~ m ~ 21 -

1* (X, m, 1) = llXI 2+ m J,

while for d = 2 we find

J.L*(X,I,m,2) ~ 12 for 0 ~ m ~ I

1**(IXI,m,2) = lVIXI - 1 + m(m
2
+ 1) j.

4. ApPROXIMATION ORDERS

To get bounds for E(l, K, $) we apply some classical results of approxi
mation theory. We start with

THEOREM 4.1. Let f E C[a, b] be a real-mlued function with a holo
morphic extension to an ellipse in the complex plane with foci a and b, and
let f have a singularity at the boundary of the ellipse. If p = R(b - a)j2 is
the sum of the two half-axes of the ellipse, then

--/-)
lim~ inf Ilf - pllx.[a.hj

/--+X pEPi

1

R

If, in addition, the absolute value of the real part ffi(j) off is bounded by 1
on the ellipse, and if we set a = - 1, b = + 1 for simplicity, we hare

8
inf Ilf-pllx,[-I,+IJ ~ -I'
PE~1 rrp

(4. I)

Proof The first part is due to Bernstein and can be found in [12,
p. 194]. The refined statement is proven in [15, p. 203]. I

640/79/2-10
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To cope with functions like ep(r) = r 2
{3 we apply

THEOREM 4.2. For any function f E Ck[a, b] with a kth derivative in the
class LiPMa' we have

where

. ck(b - a)k+a
mf Ilf - Plloo,[a.hj ~ k+a M,

pEPt' 1
( 4.2)

If the kth derivative is continuous, but not contained in any Lipschitz class,
then still

c
inf Ilf - Plloo,[a.hj ~ -Ik

pEPt'

with a constant c that depends on f, k, and [a, b], but not on I.

Proof This is due to Jackson, see, e.g., [12, p. 128].

5. ApPLICATION TO MULTIQUADRICS

(4.3)

We first treat the case of functions <Pc(r) = f(c 2 + r2
) on [-1,1] for

c > 0, where f is analytic in iC except for a singularity at the origin. The

regularity ellipse of <Pc then has half-axes of length fl+:? and c,

yielding p = c + fl+:? If I!R <Pc I is bounded by Cc on the ellipse, then
(4.0 implies

if we approximate <Pc( r) = f(c 2 + r 2) by P E IPi,- I and write the result as
a polynomial in r 2 of order at most I. For functions <PC<r) = (c 2 + r 2

){3 on
[ - 1, 1] with {3 > 0 we find
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and the general case of 4>c(r) = (c 2 + r 2 )13 on [-K, +K] is easily recov
ered as

with the scaled quantities

l' = elK,

indicating that the relative size l' of c and K is crucial.
For 13 < 0 the real part of 4>c(r) = (c 2 + r 2 )13 is unbounded on the

regularity ellipse. Thus we have to use the weaker form of Theorem 4.1 to
get

on [ - K, +K] with a constant C that will depend on c, K, 1', and 13, but
not on /. Similar estimates hold for the radial basis function 4>C<r) =

10g(c2 + r 2
).

The value pi can be bounded using

p = l' + VI + 1'2 ~ 1 + l' ~ (1- 1'/2)-1

for 0 ~ l' ~ 1 to get

pi ~ exp(jr/2).

Inserting everything into (2.12) we get the lower bound

-1 rrexp«2/** - 1),),/2) ((1 + 21'2)-13
IIA 112.2 ~ 8 K213

n C(c,K,r,f3)
for 13 > 0) (5.1 )
for 13 < 0

with exponential growth for fixed l' E [0,1], where /** is given by (3.4).
Note that (3.6) implies

for n -+ 00 and fixed 1', d. The theory for infinite grids (see Buhmann [3])
varies c proportional to the minimal distances of centres. For a fixed
bounded domain in IR d with centres forming a dense subset, this strategy is
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resembled by letting 'Y vary like n -lid. Then the behaviour for n ~ 00 is

for f3 > 0, because the exponential function in (5.2) gets a constant
argument due to cancellation.

6. ApPLICATION TO OTHER RADIAL BASIS FUNCTIONS

For <1>(r)=r 2
(3 with 2f3=2p+ 1, pEN>o we again approximate

<1>( Ir I) on [- K, K] by polynomials in IP'if ~ 1 and take advantage of the
symmetry of the best approximation. Since the derivatives up to order
2p = 2f3 - 1 are continuous and the k := 2pth derivative is in a Lipschitz
class LiPca with a = 1 and C := (2f3)! we can invoke Theorem 4.2 to get

2(3
c2p(2K)

E(l,K,<1»~ 2(3 (2f3)!
(21 - 1)

and the lower bound

with the asymptotic behaviour

for n ~ 00.

A similar analysis holds for thin-plate splines of the form <1>(r) =
r 2

(3 log r with f3 E N ~ I' Derivatives up to order 2f3 - 1 are continuous,
and for 1** ;:;: f3 there is no problem with the polynomials that arise when
taking derivatives. However, the highest continuous derivative is not
contained in any Lipschitz class. Application of the restricted statement of
Theorem 4.2 then implies

for n ~ 00 where C(f3, K) is a constant.
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For Gaussians <P(r) = exp( -azr z) we can use the Taylor expansion to
get

(aK)'
E(l, K,(/J) :;; -/-!-,

providing a disastrous lower bound on IIA- l ll z,z for fixed values of aK if
n is large.

Remark. A variation of our approach would be to approximate (/J(W)
on [hZ, K Z] for the separation distance 0.6) as used by Ball, Narcowich,
and Ward. This would make any of the classical radial basis functions
analytic in a neighbourhood of [hZ, K Z], leading to exponential decrease
of the approximation error EU, [hZ, K 2

], CP) with respect to polynomials of
order I for I --7 00. The basic estimate has the same form as (5.2), but a
detailed analysis reveals that the exponential term of this bound gets a
constant argument because of K c. nl1dh and / :::: n lld, This corresponds
to the cancellation in (5.2) when y or c are scaled to decrease with the
minimal separation distance.

For illustration, consider the function (r 2 )tl = ttl for t = r 2 E [hZ, K 2
].

After rescaling, it coincides with the multiquadric

with exponent f3 and c = hK/ VK 2
- h Z for s E [0, K Z

]. Thus the be
haviour of CP(r) = r 213, as far as our lower bounds are concerned, is
roughly the same as for multiquadrics with exponent f3 and a scaling of
c :::: h :::: y =:: n -lid, where the exponential in the bound (5.2) gets a
constant argument due to cancellation. For multiquadrics themselves, the
effect of introducing h just acts like a corresponding increase of c and
does not yield any improvement.

7. COMPARISON WITH OTHER BOUNDS

In general, the upper bounds by Ball [1] and Narcowich and Ward
[10,11] provide estimates of IIA- I Il2,2 from above in terms of the separa
tion distance h of (1.6). The corresponding lower bounds of Ball,
Sivakumar, and Ward [2] hold for a specific regularly distributed set of
centres and thus act as strict lower bounds for the worst possible data set
with prescribed separation distance h.
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In contrast to this, our lower bounds provide best-case estimates of
IIA -1112,2 from below, because they hold for every distribution of the data
points, including the best possible choice, if the latter should exist. These
bounds must necessarily be smaller than the lower bounds of Ball, Sivaku
mar, and Ward, the difference being leeway for optimizing the placement
of centres.

We start with a comparison of results for multiquadrics on increasing
sets of centres with separation distance 1 in !Rd. In this case, the optimal
bounds of Baxter [4] for IIA -1//2,2 must lie between our lower bounds and
the upper bounds of Ball, Narcowich, and Ward. Whenever Baxter's
bounds coincide with the latter, the conclusion is that regular data
asymptotically realize the worst possible distribution with separation dis
tance 1. The difference between Baxter's bounds and ours may possibly be
used for optimization of placements of centres, because we do not make
assumptions on the separation distance or regularity of distribution.

The optimal bound of Baxter for II A - 1112,2 in the case of centres on
integer grids takes the form

1T 1
IIA -1112,2 S 4e e-C71" + (1/3)e-3C1T + (l/5)e- 5c1T ...

for d = 1 and for multiquadrics <Pc(r) = (e 2 + r 2)1/2. The same value
arises as the precise limit of II A - 1112,2 for n ~ 00, when the n integer
points i EO !R with 0 sis n - 1 are taken.

Ball, Sivakumar, and Ward [2] get

IIA -1112 2 ~ Cec{ci

for n ~ 00 and the same data distribution, where the constant C does not
depend on e and d. The worst-case upper bound of Narcowich and Ward
[10] is constant, too, for n ~ 00 and data with separation distance 1, while
the dependence on e is

To compare with our results, we consider arbitrary distributions of centres
in [0, n] and get

1T (n - 1 C ) ( e2 ) - 1/2
IIA -'112,2 ~ 8n 2 exp -n- 2" 1 + 2 n2 (7.1 )

from (5.0 with exponential behaviour for C ~ 00 with n fixed. Thus no
other choice of centres can get rid of this exponential increase of II A - 1112,2
with e.
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The variation of (7.0 with n for fixed c is off from Baxter's optimal
bound for equidistant data by only a factor of n - 2. Note that a factor n - I

may be due to our special combination of matrix norms, and that there
must be at least some leeway to optimize placements of centres, which is
clearly bounded by gaining a factor of n - 2.

We now compare our bounds with those of Ball [I] and Narcowich and
Ward [10,11] and Ball, Sivakumar, and Ward [2] for irregular centres.
Since these results are in terms of the separation distance which does not
enter explicitly into our results, we have to make sure that the scaling is
fair. Thus we can either keep the separation distance fixed and let the
centres spread out into all of [Rd when their number n tends to infinity, or
we can consider large data sets of centres contained in the unit cube [0, I]d
of [Rd, letting the separation distance tend to zero when the number of
centres tends to infinity. We choose the latter possibility because it is
somewhat more related to possible applications. The diameter K of the
sets of centres we consider will thus always be bounded by /d, and the
Euclidean separation distance h for n centres in [0, I]d will be at most

(7.2)

as can be easily shown by summing the volumes of sufficiently small
disjoint cubes around each centre. In the following we shall simply use
h = /d n -lid because we are mainly interested in the case n -+ 00.

For multiquadrics (/>c(r) = (c 2 + r 2
)1/2 the results of Narcowich and

Ward [10], as refined in [2] by Ball, Sivakumar, and Ward, yield

with a constant C(d) not depending on c, h, and n. Due to (7.2) this
estimate is always worse than

if arbitrary placements of n centres in [0, l]d are allowed. Regular distribu
tion of centres on a scaled integer lattice will yield h = n - II d and

according to Ball, Sivakumar, and Ward [2], which has the same asymp
totic behaviour for n -+ 00 as the best possible upper bound. Thus, as far
as upper bounds in terms of the separation distance are concerned, the
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approach of Narcowich and Ward gives a best possible result for n regular
data with n ~ x.

Our approach allows arbitrary centres in [0, I]d and proves

I ( 2(d! nl2)lld + C2 (d) ) ,
C,(d) j 0 exp C fJ ~ IIA- 112,2

n d + 2c· 2vd

with suitable constants depending on d only. In the limit n ~ x, the
exponential increase cannot be overcome by optimized placement of
centres; there is only a factor of at most t6(n -I-lid) to be gained.

The dependence on c is exponential in all cases, and the exponential
behaviour is eliminated, if c "" n -lid is chosen. Then, up to constants
C I' C2 not depending on n, we have

Cln- I ~ IIA- I II2,2 ~ C2 n l/d

as the possible variation of IIA -'112,2 with the centres, optimizing from a
regular distribution. Note that the factor n - I occurring above was intro
duced by solving the matrix approximation problem of Section 2 in the
"wrong" norm.

For inverse multiquadrics eJJJr) = (c 2 + r 2 )-1/2 the lower bound of
Ball, Sivakumar, and Ward [2) for regular centres is

C( d)c exp ( ~cnl/d IJ) ::;; IIA·· %.2,

while we get

I ( (( d I ) '/d
C( d) nc exp 2~ 2 -in

for arbitrary centres, which is smaller by only a factor &(n - I) for n ~ x.

We now consider thin-plate splines with f/>( r) = r 2 log r with d = 2,
m = 2. Here, the best possible form of the upper bound by Narcowich and
Ward [II) is

while we get

C(d)n- 1/2 ::;; IIA-%.2'

Numerical experiments indicate that regular data have II A - '112.2 = &(n 1/2)

for n ~ 00. Thus we conjecture that our bound is off by a factor of at most
&(n - I) from the actual behaviour of II A - 1112,2 for regular data.
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For <P(r) = r 2
{3 with {3 E (0, 1), the best possible upper bound by

Narcowich and Ward [11] is

and regularly distributed centres yield

as was shown by Ball, Sivakumar, and Ward [2]. Our general bound is

for arbitrary centres and {3 = 1/2, containing a &(n - I) factor again.

8. CONCLUSIONS

The results of this paper support the hypothesis that regular placement
of centres is a good strategy as far as minimization of the condition
number of the matrix A is concerned. The theoretically possible gain by
optimization of placement of centres is not more than a factor of C(n- 2

)

or &(n - I) for n ---> co in all cases, and the proof technique indicates that
the factor &(n -)) arises for technical reasons only. Possibly the bounds on
the Euclidean norm of A -) in the literature can be generalized to hold
also for the norm IIA-III!.x, and then the factor &(n- I

) can be elimi
nated.
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